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On algebraic classification of Hermitian quasi-exactly solvable
matrix Schr ödinger operators on line

Stanislav Spichak† and Renat Zhdanov‡
Institute of Mathematics, 3 Tereshchenkivska Street, 252004 Kyiv, Ukraine
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Abstract. We construct six multi-parameter families of Hermitian quasi-exactly solvable matrix
Schr̈odinger operators in one variable. The method for finding these operators relies heavily upon
a special representation of the Lie algebrao(2, 2) ∼= sl(2) ⊕ sl(2) whose representation space
contains an invariant finite-dimensional subspace. Furthermore, we select those quasi-exactly
solvable matrix models that have square integrable eigenfunctions onR. These models are in
direct analogy with the quasi-exactly solvable scalar Schrödinger operators obtained by Turbiner
and Ushveridze.

1. Introduction

In papers [1, 2] we have extended the Turbiner–Shifman approach [3–5] (see, also [6, 7])
to the construction of quasi-exactly solvable (QES) models on line for the case of matrix
Hamiltonians. We remind ourselves that originally their method was applied to scalar one-
dimensional stationary Schrödinger equations. Later on it was extended to the case of multi-
dimensional scalar stationary Schrödinger equations [8–10] (see also [11]).

The procedure of constructing a QES matrix (scalar) model is based on the concept of a
Lie-algebraic Hamiltonian. We call a second-order operator in one variable Lie-algebraic if
the following requirements are met:

• The Hamiltonian is a quadratic form with constant coefficients of first-order operators
Q1,Q2, . . . ,Qn forming a Lie algebrag.
• The Lie algebrag has a finite-dimensional invariant subspaceI of the whole representation

space.

Now, if a given HamiltonianH [x] is Lie-algebraic, then after being restricted to the space
I it becomes a matrix operatorHwhose eigenvalues and eigenvectors are computed in a purely
algebraic way. This means that the HamiltonianH [x] is quasi-exactly solvable (for further
details on scalar QES models see [11]).

It should be noted that there exist alternative approaches to constructing matrix QES
models [12–17]. The principal idea of these is to fix the form of basis elements of the invariant
spaceI. They are chosen to be polynomials inx. This assumption leads to a challenging
problem of classification of superalgebras by matrix-differential operators in one variable
[17].
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We impose noa priori restrictions on the form of basis elements of the spaceI. What is
fixed is the class to which the basis elements of the Lie algebrag should belong. Following
[1, 2] we choose this classL as the set of matrix differential operators of the form

L = {Q : Q = a(x)∂x +A(x)}. (1)

Herea(x) is a smooth real-valued function andA(x) is anN × N matrix whose entries are
smooth complex-valued functions ofx. Hereafter we denote d/dx as∂x .

Evidently, L can be treated as an infinite-dimensional Lie algebra with a standard
commutator as a Lie bracket. Given a subalgebra〈Q1,Q2, . . . ,Qn〉 of the algebraL, whose
representation space contains a finite-dimensional invariant subspace, we can easily construct
a QES matrix model. To this end we compose a bilinear combination of the operators
Q1,Q2, . . . ,Qn (one of them may be the unitN × N matrix I ) with constant complex
coefficientsαjk and get

H [x] =
( n∑
j,k=1

αjkQjQk

)
. (2)

So there arises a natural problem of classification of subalgebras of the algebraL within
its inner automorphism group. The problem of classification of inequivalent realizations of
Lie algebras by first-order differential operators in one and two variables has been solved in
full generality by Lie itself [18, 19] (see also [20]). However, the classification problem for
the case whenA(x) 6= f (x)I with a scalar functionf (x) is open by now. In [2] we have
classified realizations of the Lie algebras of dimensions up to three by the operators belonging
to L with an arbitraryN . Next, fixingN = 2 we have selected those giving rise to QES
matrix HamiltoniansH [x]. It happens that the only three-dimensional algebra that meets this
requirement is the algebrasl(2) (which is fairly easy to predict taking into account the scalar
case!). This yields the two families of 2×2 QES models, one of them under proper restrictions
giving rise to the well known family of scalar QES Hamiltonians (for more details, see [2]).

As is well known a physically meaningful QES matrix Schrödinger operator has to
be Hermitian. This requirement imposes restrictions on the choice of QES models which
somehow were beyond considerations of our previous papers [1, 2]. It should be noted
that a problem of reducing the QES scalar operator to a Hermitian form is fairly trivial and
solved straightforwardly by rearranging a dependent variable and making an appropriate gauge
transformation of the wavefunction. However, for the case of matrix QES first- or second-
order operators the problem of transforming these to Hermitian Schrödinger forms becomes
a non-trivial one and requires very involved calculations. In contrast to the scalar case, not
every second-order matrix QES operator can be reduced to a Hermitian form. One of the
principal aims of this paper is to develop a systematic algebraic procedure for constructing
QES Hermitian matrix Schrödinger operators

Ĥ [x] = ∂2
x + V (x). (3)

This requires a slight modification of the algebraic procedure used in [2]. We consider as
an algebrag the direct sum of twosl(2) algebras which is equivalent to the algebrao(2, 2).
The necessary algebraic structures are introduced in section 2. The next section is devoted to
constructing in a regular way Hermitian QES matrix Schrödinger operators on line which is a
core result of this paper. We give the list of thus obtained QES models in section 4.

A stronger constraint imposed on the QES Schrödinger operators is that the basis elements
of invariant spaceI must be square integrable onR. A detailed study of this problem for the
case of scalar QES Schrödinger operators has been carried out recently in [21]. Using the
above-mentioned results we have constructed in this paper several classes of QES matrix
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Schr̈odinger operators (Hamiltonians) having finite-dimensional invariant spaces whose basis
elements are square integrable onR. Since these Hamiltonians are, in our opinion, the most
important result of this paper we list them below without giving derivation details which are
based on tedious calculations of sections 2–4. The models 1–4 given below are particular cases
of the more general Hermitian QES Schrödinger operators constructed in section 4.

Model 1. (Ĥ [y] + E)ψ(y) = 0, where

Ĥ [y] = ∂2
y −

y6

256
+

4m− 1

16
y2 − 1

4
y2σ3− σ1.

This model corresponds to case 1 of section 4, whereα1 = 1, β0 = 1
2, β2 = −1 and the

remaining coefficients are equal to zero. The invariant spaceI of this operator has the
dimension 2m and is spanned by the vectors

Efj = exp

(
−y

4

64

)(y
2

)2j
Ee1

Egk = exp

(
−y

4

64

)(
m
(y

2

)2k
Ee2 − k

(y
2

)2k−2
Ee1

)
wherej = 0, . . . , m − 2, k = 0, . . . , m, Ee1 = (1, 0)T , Ee2 = (0, 1)T andm is an arbitrary
natural number.

It is not difficult to verify that the basis vectors of the invariant spaceI are square integrable
on the interval(−∞,+∞). One more remark is that there exists an analogous QES scalar
Schr̈odinger operator whose invariant space has square integrable basis vectors (see, for more
details [3, 22]).

Model 2. (Ĥ [y] + E)ψ(y) = 0, where

Ĥ [y] = ∂2
y − 1

4 − 1
4 exp(−2y) +m exp(−y) + 1

2 exp(2y)

+

[
m

√
3 + 1

2
sin(
√

2ey)−
√

6

2
cos(
√

2ey)− exp(−y) sin(
√

2ey)

]
σ1

+

[
m

√
3 + 1

2
cos(
√

2ey) +

√
6

2
sin(
√

2ey)− exp(−y) cos(
√

2ey)

]
σ3.

This model corresponds to case 3 of section 4, whereα2 = 1, β1 = 2, β2 = −1, γ1 =
−1, γ2 =

√
3 and the remaining coefficients are equal to zero. The invariant spaceI of this

operator has the dimension 2m and is spanned by the vectors

Efj = U−1(y) exp(−jy)Ee1

Egk = U−1(y)(m exp(−ky)Ee2 − k exp(−(k − 1)y)Ee1)

wherej = 0, . . . , m− 2, k = 0, . . . , m,m is an arbitrary natural number and

U−1(y) = 1

2
√

2
exp

(
−y

2

)
exp

(
−1

2
e−y

)
(
√

3 +
√

2− σ3)

×
[

cos(
√

2ey) +
i
√

3σ2 − σ1√
2

sin(
√

2ey)

]
.

The basis vectors of the invariant spaceI are square integrable. Indeed, the functions
Efj (y) andEgk(y) behave asymptotically as exp(− (2j+1)y

2 ) and exp(− (2k+1)y
2 ), correspondingly,
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with y → +∞. Furthermore, they behave as exp(− (2j+1)y
2 ) exp(− 1

2e−y) and exp(− (2k+1)y
2 )×

exp(− 1
2e−y), correspondingly, withy → −∞. This means that they vanish rapidly provided

y →±∞.

Model 3. (Ĥ [y] + E)ψ(y) = 0, where

Ĥ [y] = ∂2
y +

1

4 sinh2 y

[
−1

4
cosh4 y + (2m− 1) cosh3 y − 2 cosh2 y − 2m coshy + 2

]
+1

2(2m− 1− coshy)σ3− 1
2σ1 + 1

2 .

This model corresponds to case 1 of section 4, whereα0 = −1, α2 = 1, β1 = 1, β2 = − 1
2

and the remaining coefficients are equal to zero. The invariant spaceI of this operator has the
dimension 2m and is spanned by the vectors

Efj = U−1(y) exp(−jy)Ee1

Egk = U−1(y)(m exp(−ky)Ee2 − k exp(−(k − 1)y)Ee1)

wherej = 0, . . . , m− 2, k = 0, . . . , m,m is an arbitrary natural number and

U−1(y) = exp

(
−coshy

4

) ∣∣∣tanh
y

2

∣∣∣−1/4
.

It is straightforward to check that the basis vectors of the invariant spaceI are square
integrable on the interval(−∞,+∞).

Model 4. (Ĥ [y] + E)ψ(y) = 0, where

Ĥ [y] = ∂2
y −

y2

16
+

5m2 − 2m

4m2y2
+
(2m− 1)(4m− 1)

mρ
sin
(
−ρ

2
ln |y|

)
σ1

−4m− 1

2

√
2m− 1

2m
cos

(
−ρ

2
ln |y|

)
σ3 +

1

2

andρ =
√

16m2−8m
m

.
This model corresponds to case 6.1 of section 4, whereα1 = 4, β0 = 4, β1 = −1, γ2 =

4m−1
m
, γ3 = 1

m
and the remaining coefficients are equal to zero. The invariant spaceI of this

operator has the dimension 2m and is spanned by the vectors

Efj = U−1(y) exp(−jy)Ee1

Egk = U−1(y)(m exp(−ky)Ee2 − k exp(−(k − 1)y)Ee1)

wherej = 0, . . . , m− 2, k = 0, . . . , m,m is an arbitrary natural number and

U−1(y) = |y|1/2 exp

(
−y

2

8

)[
cos

(ρ
4

ln |y|
)

+
i(4m− 1)σ2 + σ3√

16m2 − 8m
sin
(ρ

4
ln |y|

)]
3

with 3 = 1 + i(
√

16m2 − 8m + 4m− 1)σ1.
The basis vectors of the invariant spaceI are evidently square integrable on the interval

(−∞,+∞).

2. Extension of the algebrasl(2)

Following [1, 2] we consider the realization of the algebrasl(2)

[Q−,Q+] = 2Q0 [Q±,Q0] = ±Q± (4)
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having the basis elements

Q− = ∂x Q0 = x∂x − m− 1

2
+ S0 Q+ = x2∂x − (m− 1)x + 2S0x + S+ (5)

whereS0 = σ3/2, S+ = (iσ2 + σ1)/2, σk are the 2× 2 Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
andm > 2 is an arbitrary natural number. This representation gives rise to a family of QES
models and furthermore the algebra (5) has the following finite-dimensional invariant space

Isl(2) = I1⊕ I2 = 〈Ee1, xEe1, . . . , x
m−2Ee1〉⊕

〈mEe2, . . . , mx
j Ee2 − jxj−1Ee1, . . . , mx

mEe2 −mxm−1Ee1〉. (6)

Since the spacesI1, I2 are invariant with respect to an action of any of the operators (5), the
above representation is reducible. A more serious problem is that it is not possible to construct
a QES operator, that is equivalent to a Hermitian Schrödinger operator, by taking a bilinear
combination (2) of operators (5) with coefficients being complex numbers. To overcome this
difficulty we use the idea indicated in [2] and let the coefficients of the bilinear combination
(2) to be constant 2× 2 matrices. To this end we introduce a wider Lie algebra and add to the
algebra (5) the following three matrix operators:

R− = S− R0 = S−x + S0 R+ = S−x2 + 2S0x + S+ (7)

whereS± = (iσ2± σ1)/2. Note that the matricesS−, S0, S+ satisfy the commutation relations
of the algebrasl(2) (4).

It is straightforward to verify that the space (6) is invariant with respect to an action of a
linear combination of the operators (7). Consider next the following set of operators:

〈T± = Q± − R±, T0 = Q0 − R0, R±, R0, I 〉 (8)

whereQ andR are operators (5) and (7), respectively, andI is a unit 2× 2 matrix. By a
direct computation we check that the operatorsT±, T0 as well as the operatorsR±, R0, fulfill
the commutation relations of the algebrasl(2). Furthermore, any of the operatorsT±, T0

commutes with any of the operatorsR±, R0. Consequently, operators (8) form the Lie algebra

sl(2)⊕ sl(2)⊕ I ∼= o(2, 2)⊕ I.
In the following we denote this algebra asg.

The Casimir operators of the Lie algebrag are multiples of the unit matrix

C1 = T 2
0 − T+T− − T0 =

(
m2 − 1

4

)
I K2 = R2

0 − R+R− − R0 = 3
4I.

Using this fact it can be shown that the representation ofg realized on the spaceIsl(2) is
irreducible.

One more remark is that the operators (8) satisfy the following relations:

R2
− = 0 R2

0 = 1
4 R2

+ = 0

{R−, R0} = 0 {R+, R0} = 0 {R−, R+} = −1
R−R0 = 1

2R− R0R+ = 1
2R+ R−R+ = R0 − 1

2 .

(9)

Here{Q1,Q2} = Q1Q2 +Q2Q1. One of the consequences of this fact is that the algebrag

may be considered as a superalgebra which shows an evident link to the results of [17].



3820 S Spichak and R Zhdanov

3. The general form of the Hermitian QES operator

Using the commutation relations of the Lie algebrag together with relations (9) one can show
that any bilinear combination of the operators (8) is a linear combination of 21 (basis) quadratic
forms of the operators (8). Composing this linear combination yields all QES models which can
be obtained with the help of our approach. However, the final goal of this paper is not to obtain
some families of QES matrix second-order operators as such but to obtain QES Schrödinger
operators (3). This means that it is necessary to transform bilinear combination (2) to the
standard form (3). What is more, it is essential that the corresponding transformation should
be given by explicit formulae, since we need to write down explicitly the matrix potentialV (x)

of the thus obtained QES Schrödinger operator and the basis functions of its invariant space.
The general form of the QES model obtainable within the framework of our approach is

as follows:

H [x] = ξ(x)∂2
x +B(x)∂x +C(x) (10)

whereξ(x) is some real-valued function andB(x), C(x) are matrix functions of the dimension
2 × 2. Let U(x) be an invertible 2× 2 matrix-function satisfying the system of ordinary
differential equations

U ′(x) = 1

2ξ(x)

(
ξ ′(x)

2
− B(x)

)
U(x) (11)

and the functionf (x) be defined by the relation

f (x) = ±
∫

dx√
ξ(x)

. (12)

Equations (11), (12) ensure the absence of terms with the first derivatives in a transformed
Hamiltonian, so that the change of variables reducing (10) to the standard form (3) reads as

x → y = f (x)
H [x] → Ĥ [y] = Û−1(y)H [f −1(y)]Û (y)

(13)

wheref −1 stands for the inverse off andÛ (y) = U(f −1(y)).
Performing the transformation (13) yields the Schrödinger operator

Ĥ [y] = ∂2
y + V (y) (14)

with

V (y) =
{
U−1(x)

[
− 1

4ξ
B2(x)− 1

2
B ′(x) +

ξ ′

2ξ
B(x) +C(x)

]
U(x) +

ξ ′′

4
− 3ξ ′2

16ξ

}∣∣∣∣∣
x=f −1(y)

.

(15)

Hereafter, the notation{W(x)}x=f −1(y) means that we should replacex with f −1(y) in the
expressionW(x).

Furthermore, if we denote the basis elements of the invariant space (6) as
Ef1(x), . . . , Ef2m(x), then the invariant space of the operatorĤ [y] takes the form

Îsl(2) = 〈Û−1(y) Ef1(f
−1(y)), . . . , Û−1(y) Ef2m(f

−1(y))〉. (16)

In view of the remark made at the beginning of this section we are looking for such QES
models that the transformation law (13) can be given explicitly. This means that we should be
able to construct a solution of system (11) in an explicit form. To achieve this goal we select
from the above-mentioned set of 21 linearly independent quadratic forms of operators (8) those
ones whose linear combinations give rise to Hamiltonians (10) withB(x) = f (x)+∑3

i=1 γiσi ,
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wheref (x) is a complex-valued scalar function andγi are complex constants. It turns out that
the corresponding bilinear combinations of operators (8) form a twelve-dimensional vector
space whose basis elements can be chosen as follows:

A0 = ∂2
x A1 = x∂2

x A2 = x2∂2
x + (m− 1)σ3

B0 = ∂x B1 = x∂x +
σ3

2
B2 = x2∂x − (m− 1)x + σ3x + σ1

C1 = σ1∂x +
m

2
σ3 C2 = iσ2∂x +

m

2
σ3 C3 = σ3∂x

D1 = x3∂2
x − 2σ1x∂x + (3m−m2 − 3)x + (2m− 3)xσ3 + (4m− 4)σ1

D2 = x3∂2
x − 2iσ2x∂x + (3m−m2 − 3)x + (2m− 3)xσ3 + (4m− 4)σ1

D3 = 2σ3x∂x + (1− 2m)σ3.

(17)

However, in this paper we study systematically the first nine quadratic forms from the above
list and exclude the quadratic formsD1,D2,D3 from further considerations.

Thus the general form of the Hamiltonian, to be considered in a sequel, is as follows:

H [x] =
2∑

µ=0

(αµAµ + βµBµ) +
3∑
i=1

γiCi = (α2x
2 + α1x + α0)∂

2
x

+(β2x
2 + β1x + β0 + γ1σ1 + iγ2σ2 + γ3σ3)∂x + β2σ3x

−β2(m− 1)x + β2σ1 +

[
α2(m− 1) +

β1

2
+
m

2
(γ1 + γ2)

]
σ3. (18)

Hereα0, α1, α2 are arbitrary real constants andβ0, . . . , γ3 are arbitrary complex constants.
If we denote

γ̃1 = γ1 γ̃2 = iγ2 γ̃3 = γ3 δ = 2α2(m− 1) + β1 +m(γ1 + γ2)

ξ(x) = α2x
2 + α1x + α0 η(x) = β2x

2 + β1x + β0
(19)

then the general solution of system (11) reads as

U(x) = ξ1/4(x) exp

[
− 1

2

∫
η(x)

ξ(x)
dx

]
exp

[
− 1

2
γ̃iσi

∫
1

ξ(x)
dx

]
3 (20)

where3 is an arbitrary constant invertible 2× 2 matrix. Performing the transformation (13)
with U(x) being given by (20) reduces QES operator (18) to a Schrödinger form (14), where

V (y) =
{

1

4ξ
3−1{−η2 + 2ξ ′η − 2ξη′ − 4β2(m− 1)xξ − γ̃ 2

i

+2(ξ ′ − η)γ̃iσi + 4β2ξŨ
−1(x)σ1Ũ (x) + (4β2x + 2δ)ξ

× Ũ−1(x)σ3Ũ (x)}3 +
α2

2
− 3(2α2x + α1)

2

16ξ

}∣∣∣∣
x=f −1(y)

. (21)

Hereξ, η are functions ofx defined in (19),f −1(y) is the inverse off (x) which is given by
(12) and

Ũ (x) = exp

[
− 1

2
γ̃iσi

∫
1

ξ(x)
dx

]
.

The requirement of hermiticity of the Schrödinger operator (14) is equivalent to the
requirement of hermiticity of the matrixV (y). To select from the multi-parameter family
of matrices (21) Hermitian ones we will make use of the following technical lemmas.

Lemma 1. The matriceszσa, w(σa ± iσb), a 6= b, with {z,w} ⊂ C, z /∈ R, w 6= 0 cannot be
reduced to Hermitian matrices with the help of a transformation

A→ A′ = 3−1A3 (22)

where3 is an invertible constant2× 2 matrix.
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Proof. It is sufficient to prove the statement for the casea = 1, b = 2, since all other cases
are equivalent to this one. Suppose the inverse, namely that there exists a transformation (22)
transforming the matrixzσ1 to a Hermitian matrixA′. As tr(zσ1) = trA′ = 0, the matrixA′

has the formαiσi with some real constantsαi . Next, from the equality det(zσ1) = detA′ we
get z2 = α2

i . The last relation is in contradiction to the fact thatz /∈ R. Consequently, the
matrix zσ1 cannot be reduced to a Hermitian matrix with the aid of a transformation (22).

Let us turn now to the matrixw(σ1 + iσ2). Taking a general form of the matrix3

3 =
(
a b

c d

)
we represent (22) as follows

A′ = 3−1w(σ1 + iσ2)3 = 2w

δ

(
cd d2

−c2 −cd
)

δ = det3.

The conditions of hermiticity of the matrixA′ read

w

δ
cd = w̄

δ̄
c̄d̄

−w
δ
c2 = w̄

δ̄
d̄2

where the bar over a symbol stands for the complex conjugation.
It follows from the second relation thatc, d can vanish only simultaneously which is

impossible in view of the fact that the matrix3 is invertible. Consequently, the relation
cd 6= 0 holds. Hence we get

−d
c
= c̄

d̄
↔ |c|2 + |d|2 = 0.

This contradiction proves the fact that the matrixw(σ1 + iσ2) cannot be reduced to a Hermitian
form.

As the matrixσ1 + iσ2 is transformed to becomeσ1 − iσ2 with the use of an appropriate
transformation (22), the lemma is proved. �

Lemma 2. Let Ea = (a1, a2, a3), Eb = (b1, b2, b3), Ec = (c1, c2, c3) be complex vectors and
Eσ be the vector whose components are the Pauli matrices(σ1, σ2, σ3). Then the following
assertions hold true.

(i) A non-zero matrixEaEσ is reduced to a Hermitian form with the help of a transformation
(22) iff Ea2 > 0 (this inequality means, in particular, thatEa2 ∈ R).

(ii) Non-zero matricesEaEσ , EbEσ with Eb 6= λEa, λ ∈ R, are reduced simultaneously to Hermitian
forms with the help of a transformation (22) iff

Ea2 > 0 Eb2 > 0 (Ea × Eb)2 > 0.

(iii) Matrices EaEσ , EbEσ , EcEσ with Ea 6= E0, Eb 6= λEa, Ec 6= µEb, {λ,µ} ⊂ R are reduced simultaneously
to Hermitian forms with the help of a transformation (22) iff

Ea2 > 0 Eb2 > 0 (Ea × Eb)2 > 0

{EaEc EbEc (Ea × Eb)Ec} ⊂ R.
Here we designate the scalar product of vectorsEa, Eb as EaEb and the vector product of these as
Ea × Eb.

Proof. Let us first prove the necessity of assertion 1 of the lemma. Suppose that the non-zero
matrix EaEσ can be reduced to a Hermitian form. We will prove that it therefore follows the
inequalityEa2 > 0.
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Consider the matrices

3ij (a, b) =
 1 + εijk

√
a2 + b2 − b

a
iσk a 6= 0

1 a = 0
(23)

where(i, j, k) = cycle(1, 2, 3). It is not difficult to verify that these matrices are invertible,
provided

√
a2 + a2 6= 0. (24)

Given the condition (24), the following relations hold:

σl → 3−1
ij (a, b)σl3ij (a, b) =


σk l = k
bσi + aσj√
a2 + b2

l = i
−aσi + bσj√
a2 + b2

l = j .

(25)

As Ea is a non-zero vector, there exists at least one pair of the indicesi, j such that
a2
i + a2

j 6= 0. Applying the transformation (25) witha = ai, b = aj we get

EaEσ → Ea′ Eσ =
√
a2
i + a2

j σj + akσk (26)

(no summation over the indicesi, j, k is carried out). As the direct check shows, the quantity
Ea2 is invariant with respect to transformation (25), i.e.Ea2 = Ea′2.

If Ea2 = 0, thena′2j + a′2k = 0, ora′i = ±ia′k. Hence by force of lemma 1 it follows that
the matrix (26) cannot be reduced to a Hermitian form. Consequently,Ea2 6= 0 and the relation

a′2j + a′2k 6= 0 holds true. Applying transformation (25) witha =
√
a2
i + a2

j , b = ak we get

Ea′ Eσ →
√
Ea2σk. (27)

Due to lemma 1, if the number
√
Ea2 is complex, then the above matrix cannot be

transformed to a Hermitian matrix. Consequently, the relationEa2 > 0 holds true.
The sufficiency of assertion 1 of the lemma follows from the fact that, given the condition

Ea2 > 0, the matrix (27) is Hermitian.
Now we will prove the necessity of assertion 2 of the lemma. First of all we note that

due to assertion 1,Ea2 > 0, Eb2 > 0. Next, without loss of generality we can again suppose
that a2

i + a2
j 6= 0. Taking the superposition of two transformations of the form (25) with

a = ai, b = aj anda =
√
a2
i + a2

j , b = ak yields

3ij (ai, aj )3jk

(√
a2
i + a2

j , ak

)
= 1 + iεijk

√
Ea2 − ak√
a2
i + a2

j

σi

+iεijk

√
a2
i + a2

j − aj
ai

σk − iεijk

√
a2
i + a2

j − aj
ai

√
Ea2 − ak√
a2
i + a2

j

σj (28)

(here the finite limit exists whenai → 0). Using this formula and taking into account (25)
yield

EaEσ →
√
Ea2σk EbEσ → Eb′ Eσ = biaj − bjai√

a2
i + a2

j

σi +
akEaEb − bkEa2

√
Ea2
√
a2
i + a2

j

σj +
EaEb√
Ea2
σk. (29)
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Let us show that the necessary condition for the matrices
√
Ea2σk, Eb′ Eσ to be reducible

to Hermitian forms simultaneously reads asEaEb ∈ R. Indeed, as the matricesEb′ Eσ , σk are
simultaneously reduced to Hermitian forms, the matrixEb′ Eσ +λσk can be reduced to a Hermitian
form with any realλ. Hence, in view of assertion 1 we conclude that

b′2i + b′2j + (b′k + λ)2 > 0 (30)

whereλ is an arbitrary real number. The above equality may be valid only whenb′k = EaEb√
Ea2
∈ R.

Choosingλ = −b′k in (30) yields thatb′2i + b′2j > 0. Sinceb′2i + b′2j = (Ea × Eb)2, we get

the desired inequality(Ea × Eb)2 > 0. The necessity is proved.
In order to prove the sufficiency of the assertion 2, we consider transformation (25) with

a = biaj − bjai√
a2
i + a2

j

b = akEaEb − bkEa2

√
Ea2
√
a2
i + a2

j

. (31)

This transformation leaves the matrix
√
Ea2σk invariant, while the matrixEb′ Eσ (29) transforms

as follows:

Eb′ Eσ → Eb′′ Eσ =
√
(Ea × Eb)2
√
Ea2

σj +
EaEb√
Ea2
σk (32)

whence it follows the sufficiency of the assertion 2.
The proof of assertion 3 of the lemma is similar to one of assertion 2. The first three

conditions are obtained with account of assertion 2. A sequence of transformations (25) with
a, b of the form (28), (31) transforms the matrixEcEσ to become

EcEσ → Ec′′ Eσ = εijkEa(Ec × Eb)√
(Ec × Eb)2

σi +
(Ea × Eb)(Ea × Ec)√
(Ec × Eb)2

√
Ea2

σj +
EaEc√
Ea2
σk. (33)

Using the standard identities for the mixed vector products we establish that the coefficients
by the matricesσi, σj , σk are real if and only if the relations

{EaEc, EbEc, (Ea × Eb)Ec} ⊂ R
hold true. This completes the proof of lemma 2. �

4. QES matrix models

Lemma 2 plays the crucial role when reducing operators (18) to Hermitian forms. This is done
as follows. Firstly, we reduce QES operator (18) to the Schrödinger form

∂2
y + f (y)EaEσ + g(y)EbEσ + h(y)EcEσ + r(y).

Note that when performing a change of variables (13) we firstly transform the function and
after that make the change of the dependent variable.

In the above formulaef, g, h, r are some linearly independent real-valued functions and
Ea = (a1, a2, a3), Eb = (b1, b2, b3), Ec = (c1, c2, c3) are complex constant vectors whose
components depend on the parametersEα, Eβ, Eγ . Next, using lemma 2 we obtain the conditions
for the parametersEα, Eβ, Eγ that provide a simultaneous reducibility of the matricesEaEσ , EbEσ , EcEσ to
Hermitian forms. Then, making use of formulae (23), (28), (31) we find the form of the matrix
3. Formulae (27), (32), (33) yield explicit forms of the transformed matricesEaEσ , EbEσ , EcEσ and,
consequently, the Hermitian form of the matrix potentialV (y).
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Applying this classification scheme we have described all possible values of parameters
αµ, βµ, γi enabling reducibility of operatorH [x] (18) to a Hermitian Schr̈odinger operator.
As a result, we have arrived at the six inequivalent classes of Schrödinger operators (3) with
a Hermitian matrixV (x). This, in its turn, yields a complete description of QES matrix
models (18) that can be reduced to Hermitian Schrödinger matrix operators. We give below
the final results, namely, the restrictions on the choice of parameters and the explicit forms
of the QES Hermitian Schrödinger operators and then consider in some detail derivation of
the corresponding formulae for one of the six inequivalent cases. In the formulae below we
denote the disjunction of two statementsA andB as [A] ∨ [B].

Case 1. γ̃1 = γ̃2 = γ̃3 = 0 and

[β0, β1, β2 ∈ R] ∨ [β2 = 0, β1 = 2α2, β0 = α1 + iµ,µ ∈ R]

Ĥ [y] = ∂2
y +

{
1

4(α2x2 + α1x + α0)
{−β2

2x
4 − [2β1β2 + 4α2β2(m− 1)]x3

+[2α2β1− 2α1β2 − β2
1 − 2β0β2 − 4α1β2(m− 1)]x2

+[4α2β0 − 2β0β1− 4mα0β2]x + 2α1β0 − 2α0β1− β2
0

+4β2(α2x
2 + α1x + α0)σ1 + (4β2x + 2δ)(α2x

2 + α1x + α0)σ3}
+
α2

2
− 3(2α2x + α1)

2

16(α2x2 + α1x + α0)

}∣∣∣∣
x=f −1(y)

3 = 1.

Hereafter, we denote the inverse of the function

y = f (x) ≡
∫

dx√
α2x2 + α1x + α0

(34)

asf −1(y).

Case 2. β2, δ = 0 and

2α2β1− β2
1 ∈ R 2α2β0 − β0β1 ∈ R 2α1β0 − 2β1α0 − β2

0 − γ̃ 2
i ∈ R

[(2α2 − β1)
2γ̃ 2
i > 0] ∨ [2α2 − β1 = 0] [(α1− β0)

2γ̃ 2
i > 0] ∨ [α1− β0 = 0]

Ĥ [y] = ∂2
y +

{
1

4(α2x2 + α1x + α0)

{
β1(2α2 − β1)x

2 + 2β0(2α2 − β1)x

+2α1β0 − 2β1α0 − β2
0 − γ̃ 2

i + [2(2α2 − β1)x + 2(α1− β0)]
√
γ̃ 2
i σ3

}
+
α2

2
− 3(2α2x + α1)

2

16(α2x2 + α1x + α0)

}∣∣∣∣
x=f −1(y)

3 = 312(γ̃1, γ̃2)323

(√
γ̃ 2

1 + γ̃ 2
2 , γ̃3

)
γ̃ 2

1 + γ̃ 2
2 6= 0.

(If γ̃ 2
1 + γ̃ 2

2 = 0, then one can choose another matrix3 (27) with γ̃ 2
i + γ̃ 2

j 6= 0.)

Case 3. α2 6= 0, β2 6= 0 and[
{β2, γ1} ⊂ Reγ3 = 0, γ2 =

√
γ 2

1 − 2α2γ1, α2γ1 < 0, β1 = 2α2 + β2
α1

α2
, β0 = α1 + β2

α0

α2

]
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Ĥ [y] = ∂2
y +

{
α2

2
− 3(2α2x + α1)

2

16(α2x2 + α1x + α0)
+

1

4(α2x2 + α1x + α0)

×
{
− β2

2x
4 −

[
2β2

2
α1

α2
+ 4α2β2m

]
x3

−
[
β2

2

α2
2

(α2
1 + 2α0α2) + 2α1β2(1 + 2m)

]
x2

−
[

2α1β2(α1α2 + α0β2)

α2
2

+ 4α0β2m

]
x + α2

1 − β2
2

α2
0

α2
2

−4β2
α0α1

α2
− 4α0α2 − 2α2γ1 + 4β2x(α2x

2 + α1x + α0)

×
[

sin

(
θ(y)

√
−2α2γ1

)
σ1 + cos

(
θ(y)

√
−2α2γ1

)
σ3

]
+2(α2x

2 + α1x + α0)

[
sin
(
θ(y)
√−2α2γ1

)
√−2α2γ1

×
(
δ
√
−2α2γ1σ1− 2β2

√
γ 2

1 − 2α2γ1σ3

)

+ cos
(
θ(y)

√
−2α2γ1

)2β2

√
γ 2

1 − 2α2γ1√−2α2γ1
σ1 + δσ3



∣∣∣∣∣∣
x=f −1(y)

3 = 1 +

(√
1− 2α2

γ1
−
√
−2α2

γ1

)
σ3

where the functionθ = θ(y) is defined as follows:

θ(y) = −
{∫

dx

α2x2 + α1x + α0

}∣∣∣∣
x=f −1(y)

. (35)

Case 4. α2 6= 0, β2 = 0.

Subcase 4.1. δ 6= 0, γ1, γ2 do not vanish simultaneously and

γ 2
1 − γ 2

2 < 0 γ3 = iµ {µ, δ} ⊂ R i(α1− β0) ∈ R β1 = 2α2

Ĥ [y] = ∂2
y +

{
α2

2
− 3(2α2x + α1)

2

16(α2x2 + α1x + α0)
+

1

4ξ

×
{
− β2

0 + 2α1β0 − 2α0β1− γ̃ 2
i + 2(α2x

2 + α1x + α0)

×

δ√γ 2
2 − γ 2

1 σ1

sin

(
θ(y)

√
−γ̃ 2

i

)
√
−γ̃ 2

i

+
−iδγ3

√
γ 2

2 − γ 2
1 σ2 + δ(γ 2

1 − γ 2
2 )σ3

γ̃ 2
i

× cos(θ(y)
√
−γ̃ 2

i )

]
+

[
2δα2γ3

γ̃ 2
i

x2 +
2δα1γ3

γ̃ 2
i

x

+
(2α1− 2β0)γ̃

2
i + 2δα0γ3

γ̃ 2
i

](
i
√
γ 2

2 − γ 2
1 σ2 + γ3σ3

)}}∣∣∣∣
x=f −1(y)
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3 = 321(iγ1, γ2).

Subcase 4.2. δ 6= 0, γ1 = γ2 = 0, γ3 6= 0 and

{δ, β1(2α2 − β1), β0(2α2 − β1),−β2
0 + 2α1β0 − 2α0β1, γ3(2α2 − β1), γ3(α1− β0)} ⊂ R

Ĥ [y] = ∂2
y +

{
α2

2
− 3(2α2x + α1)

2

16(α2x2 + α1x + α0)
+

1

4(α2x2 + α1x + α0)

}
{β1(2α2 − β1)x

2

+2β0(2α2 − β1)x − β2
0 + 2α1β0 − 2β1α0 − γ 2

3

+[2δα2x
2 + 2x((2α2 − β1)γ3 + δα1) + 2(α1− β0)γ3 + 2δα0]σ3}}|x=f −1(y)

3 = 1.

Case 5. α2 = 0,β2 6= 0 and

α1 6= 0, γ 2
1 − γ 2

2 < 0, γ̃ 2
i < 0, γ3 = γ̃ 2

i

2α1

{β0, β1, β2, γ2, δ(γ
2
2 − γ 2

1 ) + 2β2γ1γ3} ⊂ R
{i(2α0β2γ3− β1γ̃

2
i + 2β2α1γ1 + δα1γ3), i((α1− β0)γ̃

2
i + 2β2α0γ1 + δα0γ3)} ⊂ R

Ĥ [y] = ∂2
y +

{
− 3α2

1

16(α1x + α0)
+

1

4(α1x + α0)

{
− β2

2x
4 − 2β1β2x

3

+[(2− 4m)α1β2 − β2
1 − 2β0β2]x2 − [2β0β1 + 4mα0β2]x

+2α1β0 − 2α0β1− β2
0 − γ̃ 2

i + 4x(α1x + α0)

×

β2

√
γ 2

2 − γ 2
1 σ1

sin

(
θ(y)

√
−γ̃ 2

i

)
√
−γ̃ 2

i

+
β2

√
(γ 2

1 − γ 2
2 )γ̃

2
i

γ̃ 2
i

σ3

× cos

(
θ(y)

√
−γ̃ 2

i

)]
+ 2(α1x + α0)

×


δ(γ 2

2 − γ 2
1 ) + 2β2γ1γ3√
γ 2

2 − γ 2
1

σ1− 2β2γ2γ̃
2
i√

(γ 2
1 − γ 2

2 )γ̃
2
i

σ3

 sin

(
θ(y)

√
−γ̃ 2

i

)
√
−γ̃ 2

i

+

 2β2γ2√
γ 2

2 − γ 2
1

σ1 +
δ(γ 2

1 − γ 2
2 )− 2β2γ1γ3√

(γ 2
1 − γ 2

2 )γ̃
2
i

σ3

 cos

(
θ(y)

√
−γ̃ 2

i

)
+

[
x

4α0β2γ3− 2β1γ̃
2
i + 4α1β2γ1 + 2δα1γ3

γ̃ 2
i

+
(2α1− 2β0)γ̃

2
i + 4α0β2γ1 + 2δα0γ3

γ̃ 2
i

](
−i
√
−γ̃ 2

i σ2

)}}∣∣∣∣
x=f −1(y)

3 = 321(iγ1, γ2)323

(
−iγ3

√
γ 2

2 − γ 2
1 , γ

2
1 − γ 2

2

)
.

Case 6. α2 = 0 ,β2 = 0.
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Subcase 6.1. δ 6= 0, γ̃1, γ̃2 do not vanish simultaneously and

γ̃ 2
i < 0, {δ2(γ 2

1 − γ 2
2 ) < 0, β0, β1} ⊂ R

{i(−β1γ̃
2
i + δα1γ3), i((α1− β0)γ̃

2
i + δα0γ3)} ⊂ R

Ĥ [y] = ∂2
y +

{
− 3α2

1

16(α1x + α0)
+

1

4(α1x + α0)

×
{
− β2

1x
2 − 2β0β1x + 2α1β0 − 2α0β1− β2

0 − γ̃ 2
i + 2(α1x + α0)

×

δ√γ 2
2 − γ 2

1 σ1

sin

(
θ(y)

√
−γ̃ 2

i

)
√
−γ̃ 2

i

+
δ(γ 2

1 − γ 2
2 )√

(γ 2
1 − γ 2

2 )γ̃
2
i

σ3

× cos

(
θ(y)

√
−γ̃ 2

i

)]
+

[
x
−2β1γ̃

2
i + 2δα1γ3

γ̃ 2
i

+
(2α1− 2β0)γ̃

2
i + 2δα0γ3

γ̃ 2
i

]
×
(
−i
√
−γ̃ 2

i σ2

)}}∣∣∣∣
x=f −1(y)

3 = 321(iγ1, γ2)323

(
−iγ3

√
γ 2

2 − γ 2
1 , γ

2
1 − γ 2

2

)
.

Subcase 6.2.

γ1 = γ2 = 0, γ3 6= 0 {β2
1, β0β1} ⊂ R

{−β1γ3 + δα1, (α1− β0)γ3 + δα0,−β2
0 + 2α1β0 − 2α0β1} ⊂ R

Ĥ [y] = ∂2
y +

{
− 3α2

1

16(α1x + α0)
+

1

4(α1x + α0)

×{−β2
1x

2 − 2β0β1x + 2α1β0 − 2α0β1− β2
0 − γ 2

3

+2(α1x + α0)[2xβ1(α1− γ3) + 2(α1− β0)γ3 + 2β1α0]σ3}
}∣∣∣∣
x=f −1(y)

3 = 1.

In the above formulaẽγ 2
i stands forγ̃ 2

1 + γ̃ 2
2 + γ̃ 2

3 and the matricesλ12, λ23 are given in [21].
The whole procedure of derivation of the above formulae is very cumbersome. That is

why we restrict ourselves to indicating the principal steps of the derivation of the corresponding
formulae for the case whenα2 6= 0, β2 6= 0 omitting the secondary details. It is not difficult to
prove thatγ̃ 2

i 6= 0. Indeed, suppose that the relationγ̃ 2
i = 0 holds and consider the expression

� = Ũ−1(x)σ3Ũ (x) from (21). Making use of the Campbell–Hausdorff formula we get

� = σ3 + θ(iγ1σ2 + γ2σ1)− θ
2

2
γ3γ̃iσi

whereθ is the function (35). Considering the coefficient atθ2 yields thatγ3 = 0 (otherwise
using lemma 2 we get the inequalityγ 2

3 γ̃
2
i 6= 0 that contradicts the assumptionγ̃ 2

i = 0). Since
the matrix coefficient atθ has to be Hermitian, we getγ̃ 2

i = γ 2
1 − γ 2

2 < 0. This contradiction
proves thatγ̃ 2

i 6= 0. In view of this inequality we can represent the matrix potential (21) as
follows:

V (y) =
{
α2

2
− 3(2α2x + α1)

2

16(α2x2 + α1x + α0)
+

1

4(α2x2 + α1x + α0)
3−1



Hermitian quasi-exactly solvable matrix Schrödinger operators 3829

×
{
− β2

2x
4 − [2β1β2 + 4α2β2(m− 1)]x3

+[2α2β1− 2α1β2 − β2
1 − 2β0β2 − 4α1β2(m− 1)]x2

+[4α2β0 − 2β0β1− 4mα0β2]x + 2α1β0 − 2α0β1− β2
0 − γ̃ 2

i

+4x(α2x
2 + α1x + α0)

[
β2γ3(γ̃

2
i )
−1γ̃iσi

+β2(γ2σ1 + iγ1σ2)(γ̃
2
i )
−1/2 sinh

(
θ

√
γ̃ 2
i

)
+[β2(−γ1γ3σ1− iγ2γ3σ2 + (γ 2

1 − γ 2
2 )σ3)](γ̃

2
i )
−1 cosh

(
θ

√
γ̃ 2
i

)]
+2(α2x

2 + α1x + α0)[(δγ2σ1 + i(δγ1− 2β2γ3)σ2

−2β2γ2σ3)(γ̃
2
i )
−1/2 sinh

(
θ

√
γ̃ 2
i

)
+

[
(2β2(γ

2
3 − γ 2

2 )− δγ1γ3)σ1− i(2β2γ1γ2

+δγ2γ3)σ2 + (δ(γ 2
1 − γ 2

2 )− 2β2γ1γ3)σ3](γ̃ 2
i )
−1 cosh

(
θ

√
γ̃ 2
i

)]
+[(−2β2γ̃

2
i + 4α2β2γ1 + 2δα2γ3)x

2 + ((4α2 − 2β1)γ̃
2
i + 4α1β2γ1 + 2δα1γ3)x

+
(2α1− 2β0)γ̃

2
i + 4α0β2γ1 + 2δα0γ3

γ̃ 2
i

](γ̃ 2
i )
−1γ̃iσi

}
3

}∣∣∣∣
x=f −1(y)

(36)

whereθ = θ(y) is given by (35).
Let us first suppose thatγ1, γ2 do not vanish simultaneously. We will prove that it therefore

follows that γ̃ 2
i ∈ R. Consider the (non-zero) matrix coefficient at 4xξ cosh(θ

√
γ̃ 2
i ) in the

expression (36) and suppose that
√
γ̃ 2
i = a + ib, with some non-zero real numbersa andb.

Now it is easy to prove that cosh(θ
√
γ̃ 2
i ) = f (x) + ig(x), wheref, g are linearly independent

real-valued functions. Considering the matrix coefficients off (x), g(x)we see that in order to
reduce the matrix (36) to a Hermitian form we should reduce to Hermitian forms the matrices
A, iA which is impossible. This contradiction proves thatγ̃ 2

i ∈ R.

Consider next the non-zero matrix coefficients of 4xξ
sinh(θ
√
γ̃ 2
i )√

γ̃ 2
i

, 4xξ cosh(θ
√
γ̃ 2
i ) in (36).

These coefficients can be represented in the formEaEσ , EbEσ , where

Ea = β2(γ2, iγ1, 0) Eb = β2(−γ1γ3,−iγ2γ3, γ
2
1 − γ 2

2 )

and, what is more,

Ea × Eb = β2
2(γ

2
1 − γ 2

2 )(iγ1,−γ2, iγ3).

Applying lemma 2 yields

βi ∈ R γ3 = iµ µ ∈ R γ 2
1 − γ 2

2 < 0.

Next we turn to the matrix coefficient of 2ξ
sinh(θ
√
γ̃ 2
i )√

γ̃ 2
i

which is of the formEcEσ with

Ec = (δγ2, i(δγ1 − 2β2γ3),−2β2γ2). Making use of assertion 3 of lemma 2 we obtain the
conditions

{γ1, γ2} ⊂ R [γ1 = 0] ∨ [γ3 = 0].
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Considering in a similar way the matrix coefficient of 2ξ cosh(θ
√
γ̃ 2
i ) yields the following

restrictions on the coefficientsEα, Eβ, Eγ :[
{β2, γ1} ⊂ R, γ3 = 0, γ2 =

√
γ 2

1 − 2α2γ1, α2γ1 < 0, β1 = 2α2 + β2
α1

α2
, β0 = α1 + β2

α0

α2

]
.

As a result we get the formulae of case 2.
One can prove in an analogous way that, providedγ1 = γ2 = 0, γ3 6= 0, the matrix (36)

cannot be reduced to a Hermitian form.
A further restriction narrowing the choice of QES matrix Hamiltonians is a requirement

that the basis elements of the corresponding invariant space should be square integrable on the
interval(−∞,∞). For example, if we put in case 1α1 = 1, β0 = 1

2, β2 = −1, the remaining
coefficients being equal to zero, then we arrive at model 1 from the list of QES Hamiltonians
given in the introduction. The remaining models given there are obtained in an analogous way.

5. Some conclusions

A principal aim of this paper is to give a systematic algebraic treatment of Hermitian QES
Hamiltonians within the framework of the approach to constructing QES matrix models
suggested in our papers [1, 2]. The whole procedure is based on a specific representation of the
algebrao(2, 2) given by formulae (5), (7), (8). Making use of the fact that the representation
space of the algebra (8) has a finite-dimensional invariant subspace (6) we have constructed in
a systematic way six multi-parameter families of Hermitian QES Hamiltonians on line. Due
to computational reasons we do not present here a systematic description of Hermitian QES
Hamiltonians with potentials depending on elliptic functions.

The problem of constructing all Hermitian QES Hamiltonians of the form (18) having
square integrable eigenfunctions is also beyond the scope of this paper. We restricted our
analysis of this problem to giving several examples of such Hamiltonians postponing its further
investigation for our future publications.

A very interesting problem is a comparison of the results of this paper based on the
structure of representation space of the representation (5), (7), (8) of the Lie algebrao(2, 2) to
those of [17], where some superalgebras of matrix-differential operators come into play. The
link to the results of [17] is provided by the fact that the Lie algebrao(2, 2) has a structure of
a superalgebra. This is a consequence of the fact that operators (8) fulfill identities (9).

One more challenging problem is a utilization of the obtained results for integrating
multi-dimensional Pauli equation with the help of the method of separation of variables. As
an intermediate problem to be solved within the framework of the method in question is a
reduction of the Pauli equation to four second-order systems of ordinary differential equations
with the help of a separation ansatz. The next step is studying whether the corresponding
matrix-differential operators belong to one of the six classes of QES Hamiltonians constructed
in section 4.

Investigation of the above enumerated problems is now in progress and we hope to report
the results obtained in one of our future publications.
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