IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On algebraic classification of Hermitian quasi-exactly solvable matrix Schrodinger operators

on line

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 3815
(http://iopscience.iop.org/0305-4470/32/20/313)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:32

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2(1999) 3815-3831. Printed in the UK PIl: S0305-4470(99)00755-6

On algebraic classification of Hermitian quasi-exactly solvable
matrix Schrodinger operators on line

Stanislav Spichakt and Renat Zhdanovt
Institute of Mathematics, 3 Tereshchenkivska Street, 252004 Kyiv, Ukraine

Received 8 January 1999

Abstract. We construct six multi-parameter families of Hermitian quasi-exactly solvable matrix
Schibdinger operators in one variable. The method for finding these operators relies heavily upon
a special representation of the Lie algebra, 2) = s/(2) @ sI(2) whose representation space
contains an invariant finite-dimensional subspace. Furthermore, we select those quasi-exactly
solvable matrix models that have square integrable eigenfunctiorfis chhese models are in
direct analogy with the quasi-exactly solvable scalar 8dimger operators obtained by Turbiner

and Ushveridze.

1. Introduction

In papers [1,2] we have extended the Turbiner—Shifman approach [3-5] (see, also [6, 7])
to the construction of quasi-exactly solvable (QES) models on line for the case of matrix
Hamiltonians. We remind ourselves that originally their method was applied to scalar one-
dimensional stationary Sabdinger equations. Later on it was extended to the case of multi-
dimensional scalar stationary Sodinger equations [8—10] (see also [11]).

The procedure of constructing a QES matrix (scalar) model is based on the concept of a
Lie-algebraic Hamiltonian. We call a second-order operator in one variable Lie-algebraic if
the following requirements are met:

e The Hamiltonian is a quadratic form with constant coefficients of first-order operators
01, 02, ..., Q, forming a Lie algebrg.

e The Lie algebrg has a finite-dimensional invariant subspaad the whole representation
space.

Now, if a given HamiltoniarH [ x] is Lie-algebraic, then after being restricted to the space
7 itbecomes a matrix operatdf whose eigenvalues and eigenvectors are computed in a purely
algebraic way. This means that the Hamiltonifix] is quasi-exactly solvable (for further
details on scalar QES models see [11]).

It should be noted that there exist alternative approaches to constructing matrix QES
models [12—-17]. The principal idea of these is to fix the form of basis elements of the invariant
spaceZ. They are chosen to be polynomialsiin This assumption leads to a challenging
problem of classification of superalgebras by matrix-differential operators in one variable
[17].
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We impose na priori restrictions on the form of basis elements of the sgacé/hat is
fixed is the class to which the basis elements of the Lie algglstaould belong. Following
[1, 2] we choose this clas as the set of matrix differential operators of the form

L={0Q:0=ax)d+AX)} @

Herea(x) is a smooth real-valued function ardx) is anN x N matrix whose entries are
smooth complex-valued functions of Hereafter we denote/dx asa,.

Evidently, £ can be treated as an infinite-dimensional Lie algebra with a standard
commutator as a Lie bracket. Given a subalg€id@a Qo, ..., Q,) of the algebraC, whose
representation space contains a finite-dimensional invariant subspace, we can easily construct
a QES matrix model. To this end we compose a bilinear combination of the operators
01, 02, ..., Q, (one of them may be the unlY x N matrix I) with constant complex
coefficientsx j; and get

HIx] = ( ) a,»kQ,Qk). @
J.k=1

So there arises a natural problem of classification of subalgebras of the alpefitdn
its inner automorphism group. The problem of classification of inequivalent realizations of
Lie algebras by first-order differential operators in one and two variables has been solved in
full generality by Lie itself [18, 19] (see also [20]). However, the classification problem for
the case whem (x) # f(x)I with a scalar functionf(x) is open by now. In [2] we have
classified realizations of the Lie algebras of dimensions up to three by the operators belonging
to £ with an arbitraryN. Next, fixing N = 2 we have selected those giving rise to QES
matrix HamiltoniansH[x]. It happens that the only three-dimensional algebra that meets this
requirement is the algebsa(2) (which is fairly easy to predict taking into account the scalar
case!). Thisyields the two families o822 QES models, one of them under proper restrictions
giving rise to the well known family of scalar QES Hamiltonians (for more details, see [2]).

As is well known a physically meaningful QES matrix Sétiinger operator has to
be Hermitian. This requirement imposes restrictions on the choice of QES models which
somehow were beyond considerations of our previous papers [1,2]. It should be noted
that a problem of reducing the QES scalar operator to a Hermitian form is fairly trivial and
solved straightforwardly by rearranging a dependent variable and making an appropriate gauge
transformation of the wavefunction. However, for the case of matrix QES first- or second-
order operators the problem of transforming these to Hermitiand8aiger forms becomes
a non-trivial one and requires very involved calculations. In contrast to the scalar case, not
every second-order matrix QES operator can be reduced to a Hermitian form. One of the
principal aims of this paper is to develop a systematic algebraic procedure for constructing
QES Hermitian matrix Scldinger operators

H[x] = 82+ V (x). 3)

This requires a slight modification of the algebraic procedure used in [2]. We consider as
an algebrg the direct sum of twal(2) algebras which is equivalent to the algeb(a, 2).
The necessary algebraic structures are introduced in section 2. The next section is devoted to
constructing in a regular way Hermitian QES matrix Sictinger operators on line which is a
core result of this paper. We give the list of thus obtained QES models in section 4.

A stronger constraintimposed on the QES ®dimger operators is that the basis elements
of invariant spac&€ must be square integrable & A detailed study of this problem for the
case of scalar QES Sditinger operators has been carried out recently in [21]. Using the
above-mentioned results we have constructed in this paper several classes of QES matrix
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Schiddinger operators (Hamiltonians) having finite-dimensional invariant spaces whose basis
elements are square integrable®nSince these Hamiltonians are, in our opinion, the most
important result of this paper we list them below without giving derivation details which are
based on tedious calculations of sections 2—4. The models 1-4 given below are particular cases
of the more general Hermitian QES Sétimger operators constructed in section 4.

Model 1. (H[y]+ E)y¥(y) = 0, where

6
y dn-1, 1,
H[y] =92 — -+ — 2y%03 — 0.
] = et g Y T erm o
This model corresponds to case 1 of section 4, whgre= 1, 8y = % B2 = —1 and the
remaining coefficients are equal to zero. The invariant sgacé this operator has the
dimension Z: and is spanned by the vectors

4

f=en(-5) (3)
-en(-5) ((3) -t (3 5)

wherej =0,...,m —2,k=0,...,m, ¢, = (1,07,é, = (0, )T andm is an arbitrary
natural number.

Itis not difficult to verify that the basis vectors of the invariant sgaeaee square integrable
on the interval(—oo, +00). One more remark is that there exists an analogous QES scalar
Schibdinger operator whose invariant space has square integrable basis vectors (see, for more
details [3, 22]).

Model 2. (H[y]+ E)y¥/(y) = 0, where
H[y] = 92 — § — % exp(—2y) + mexp(—y) + 3 exp(2y)

+ |:m \/§2+ 1sin(«/ﬁe”) — \/76 cos+v/2€") — exp(—y) sin(x/ie")] o1
. [m \/§2+ 1

cogv/2¢e) + ? sin(+/2€") — exp(—y) cos(x/ie")} 3.

This model corresponds to case 3 of section 4, where= 1,81 = 2,8, = =1, y1 =
—1, y2 = +/3 and the remaining coefficients are equal to zero. The invariant gpatthis
operator has the dimensiom2and is spanned by the vectors

fi = Ut exp(—jy)ér
8 = U™ () (m exp(—ky)é, — k exp(—(k — 1)y)é1)
wherej =0,...,m —2,k=0,...,m, mis an arbitrary natural number and

Uty = \/_exp( y)exp(——e )(\/é +/2 - 03)
X [cos{fe)+ Ifjﬁ sm(«/_ey)}

The basis vectors of the invariant spatare square integrable. Indeed, the functions
f;(y) andg,(y) behave asymptotically as exp32) and exp— Z322), correspondingly,
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with y — +oco. Furthermore, they behave as éxp232Y) exp(—2e~) and exg—Z32) x

exp(—%e*y), correspondingly, withh — —oo. This means that they vanish rapidly provided
y — +oo0.

Model 3. (H[y]+ E)y¥/(y) = 0, where

N 1 1
H[y] = 87+ — I:——COSHly+(2m—1)Cosﬁy—2005f?ry—2mCOShy+2:|
4sintfy | 4

+1(2m — 1 — coshy)os — 301 + 3.
This model corresponds to case 1 of section 4, whgre- —1, 0, = 1,81 =1, 8, = —%
t

and the remaining coefficients are equal to zero. The invariant gpafcihis operator has the
dimension Z: and is spanned by the vectors

fi = Ut () exp(—jy)ér
8 = U (y) (m exp(—ky)éz — kexp(—(k — 1)y)én)
wherej =0,...,m —2,k=0,...,m,mis an arbitrary natural number and
cosh -1/4
Uty = exp(—Ty> ‘tanh%‘ )

It is straightforward to check that the basis vectors of the invariant spage square
integrable on the interval-oo, +00).

Model 4. (H[y]+ E)y/(y) = 0, where

2 2
A a2 Y 5mc—-2m (2m—1D(4m —1) . P
H[y] =09, — 16 + 2y + p sin <_§ In |y|) o1

dm —1 [2m —1 P 1
— —— + —
2 V om COS( 2 ”'y') %3t3

and,o — /16m2—8m

I

This mo?jel corresponds to case 6.1 of section 4, where 4, 8o = 4, 81 = —1, 1> =

41 ys = L and the remaining coefficients are equal to zero. The invariant Spatehis

operator has the dimensiom2and is spanned by the vectors
fi = UM (y) exp(—jy)és
g = U™ () (mexp(—ky)éz — kexp(—(k — 1)y)ér)

wherej =0,...,m —2,k=0,...,m,mis an arbitrary natural number and
2 i(4m — 1)oy + 03 o
U Yy = |y|¥? A 2 +— 7 gin(L A
) = v exp( ~5 ) | cos(GIn1y1) + = sin (G iy

with A = 1 +i(+/16m2 — 8m + 4m — 1)o.
The basis vectors of the invariant spacare evidently square integrable on the interval
(—OO, +OO).

2. Extension of the algebrasi(2)

Following [1, 2] we consider the realization of the algebté&)
[0-. 0+] =200 [Q+, Qo] = +0+ (4)
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having the basis elements

—1
0 =0, Oo=xd — =45, +=x20, — (m — Dx +25px + S» (5)

whereSy = 03/2, S+ = (io2 + 01) /2, 0}, are the 2x 2 Pauli matrices

(18 w(13) (0

andm > 2 is an arbitrary natural number. This representation gives rise to a family of QES
models and furthermore the algebra (5) has the following finite-dimensional invariant space

= = m—2=
Tao)y =11 ®Ir = (e1, xeq, ..., x" “e1)®
(méy, ... ,mx'e, — jx/71eq, ..., mx"éy — mx""

(6)

1e1).

Since the spacés, 7, are invariant with respect to an action of any of the operators (5), the
above representation is reducible. A more serious problem is that it is not possible to construct
a QES operator, that is equivalent to a Hermitian 8dhrger operator, by taking a bilinear
combination (2) of operators (5) with coefficients being complex numbers. To overcome this
difficulty we use the idea indicated in [2] and let the coefficients of the bilinear combination
(2) to be constant 2 2 matrices. To this end we introduce a wider Lie algebra and add to the
algebra (5) the following three matrix operators:

R_=S_ Ro= S_x +So = S_x%+2Sox + S, (7)

whereS. = (ioo & 01)/2. Note that the matrice$_, So, S+ satisfy the commutation relations
of the algebral(2) (4).

It is straightforward to verify that the space (6) is invariant with respect to an action of a
linear combination of the operators (7). Consider next the following set of operators:

(T: = Q+ — R+, To = Qo — Ro, R+, Ro, I) 8)

where Q and R are operators (5) and (7), respectively, dnid a unit 2x 2 matrix. By a
direct computation we check that the operatbrs Ty as well as the operato.., Ry, fulfill

the commutation relations of the algebyig@2). Furthermore, any of the operatorfs, Ty
commutes with any of the operataRs, Rg. Consequently, operators (8) form the Lie algebra

sSIQ@sIQ @I =022 1.

In the following we denote this algebra gs
The Casimir operators of the Lie algelyrare multiples of the unit matrix

~

2 _
CLeT?-TT —To= ("=2)1 K= R2—R.R —Ro=?
1= 1g — I+d—- — 10 = 4 2= g — [+ — R a1
Using this fact it can be shown that the representatiog ofalized on the spacg; ) is
irreducible.

One more remark is that the operators (8) satisfy the following relations:

RZ =0 R =1 RZ=0
{R-,Ro} =0 {R+, Ro} =0 {R-.R:}=-1 ©)
R_Ro= 3R_ RoR: = 3R, R_R.=Ro— 3.

Here{Q1, 02} = 010>+ 0201. One of the consequences of this fact is that the alggbra
may be considered as a superalgebra which shows an evident link to the results of [17].



3820 S Spichak and R Zhdanov
3. The general form of the Hermitian QES operator

Using the commutation relations of the Lie algepr@gether with relations (9) one can show
that any bilinear combination of the operators (8) is a linear combination of 21 (basis) quadratic
forms of the operators (8). Composing this linear combination yields all QES models which can
be obtained with the help of our approach. However, the final goal of this paper is not to obtain
some families of QES matrix second-order operators as such but to obtain QEiSghr
operators (3). This means that it is necessary to transform bilinear combination (2) to the
standard form (3). What is more, it is essential that the corresponding transformation should
be given by explicit formulae, since we need to write down explicitly the matrix potantiel
of the thus obtained QES Scitinger operator and the basis functions of its invariant space.
The general form of the QES model obtainable within the framework of our approach is
as follows:

H[x] = £(x)3? + B(x)d, + C(x) (10)

wheret (x) is some real-valued function atx), C (x) are matrix functions of the dimension
2 x 2. LetU(x) be an invertible 2x 2 matrix-function satisfying the system of ordinary
differential equations

D AN
U'x) = 2% < 5 B(x)) U(x) (12)
and the functionf (x) be defined by the relation
dx
=+ | ——. 12
f(x) iG] 12)

Equations (11), (12) ensure the absence of terms with the first derivatives in a transformed
Hamiltonian, so that the change of variables reducing (10) to the standard form (3) reads as

x—>y=f(x)

H[x] — A = 0 0 HLF 010 ) (13)
where f~1 stands for the inverse gf andU (y) = U(f~1(y)).
Performing the transformation (13) yields the Sidinger operator
Hlyl = 92+ V() (14)
with
V(y) = {U—l(x) [—%Bz(x) — %B’(x) + %B(x) + C(x):| U(x) + %ﬂ - i‘i} e
x=f <(>1)5)

Hereafter, the notatiofW (x)},_ s-1(,, means that we should replagewith £~ 1(y) in the
expressiorV (x).

_ Furthermore, if we denote the basis elements of the invariant space (6) as
Ff1(x), ..., fan(x), then the invariant space of the operaktjiy] takes the form

Ty = O M AG O, .., U fan (FEO))). (16)

In view of the remark made at the beginning of this section we are looking for such QES
models that the transformation law (13) can be given explicitly. This means that we should be
able to construct a solution of system (11) in an explicit form. To achieve this goal we select
from the above-mentioned set of 21 linearly independent quadratic forms of operators (8) those
ones whose linear combinations give rise to Hamiltonians (10) B(ith = f(x) +Zf:l ViOi,
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wheref (x) is a complex-valued scalar function apdare complex constants. It turns out that
the corresponding bilinear combinations of operators (8) form a twelve-dimensional vector
space whose basis elements can be chosen as follows:

Ag = 92 Ap = xd? Ay = x232+ (m — o3

Bo = 0, Blzx8x+% Bzzxzax—(m—l)x+03x+al

C1 =010, + = Cy = 090y + o Cs = 030

1= 010x 503 2 = 1020x 503 3 = 030y (17)

D, = x38f — 201x0, + (3m — m? — 3)x + (2m — 3)xo3 + (4m — oy

D, = x38)? — 2ioxd, + (3m — m? — 3)x + (2m — 3)xo03 + (4m — 4o,

D3 = 203x0, + (1 — 2m)os.
However, in this paper we study systematically the first nine quadratic forms from the above
list and exclude the quadratic forniy, D,, D3 from further considerations.

Thus the general form of the Hamiltonian, to be considered in a sequel, is as follows:
2 3

H[x] = (@uAu+ BB+ viCi = (aax? +o1x +0t0)d?
n=0 i=1
+(Box? + B1x + Po + Y101 + iy202 + 1303)0, + Pro3x
B m

—Ba(m — Dx + Boo1 + [aa(m — 1) + > + E(Vl +y2) | o3. (18)

Hereao, a1, a; are arbitrary real constants afigl . . . , y3 are arbitrary complex constants.
If we denote

n=mn y2=ly2 Y3 =y3 8 =202(m — 1) + 1+ m(yL+ y2) (19)
E(x) = apx? +oux + o n(x) = Pox?+ p1x + Po

then the general solution of system (11) reads as

1 (k) 1. 1
Ux) = V%) ex |:—— —dxi|ex |:——,-a,-/—dxi|A 20
(x) =§7"(x) exp 2]t Pl — 5V £ (20)
whereA is an arbitrary constant invertibles2 2 matrix. Performing the transformation (13)
with U (x) being given by (20) reduces QES operator (18) to a &tihger form (14), where
1 , -
V(y) = {EA‘l{—nz +26'n — 250 — A4Pa(m — Dx§ — 77
+2(5' — myio; + 425U ()01 U (x) + (42x + 26)§
~ ~ 2 + 2
% U_l(x)(r3U(x)}A + *2 _ 3(0{2x—011)} .
2 16 x=f"1(y)

Hereég, n are functions of defined in (19).f~(y) is the inverse off (x) which is given by

(12) and
Ukx) = exp| — zyio —dx

The requirement of hermiticity of the Sd@uinger operator (14) is equivalent to the
requirement of hermiticity of the matri¥ (y). To select from the multi-parameter family
of matrices (21) Hermitian ones we will make use of the following technical lemmas.

Lemma 1. The matricego,, w(o, £ ioy),a # b, with{z, w} C C, z ¢ R, w # 0 cannot be
reduced to Hermitian matrices with the help of a transformation

A— A =ATAA (22)
whereA is an invertible constar® x 2 matrix.

(21)
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Proof. It is sufficient to prove the statement for the case: 1, b = 2, since all other cases
are equivalent to this one. Suppose the inverse, namely that there exists a transformation (22)
transforming the matrixo; to a Hermitian matrixd’. As tr(zo;) = tr A’ = 0, the matrixA’
has the formy;o; with some real constantg. Next, from the equality déto;) = detA’ we
getz? = af. The last relation is in contradiction to the fact thag R. Consequently, the
matrix zo7 cannot be reduced to a Hermitian matrix with the aid of a transformation (22).

Let us turn now to the matriw (o1 + ioy). Taking a general form of the matrix

n=(¢ )

we represent (22) as follows

_ . 2w ( cd d?
A = A tw(oy +io)A = > (—02 —cd) § = detA.
The conditions of hermiticity of the matrit’ read
Eca’ = 25(7 _—wcz = 2&2
k) 5 1) )

where the bar over a symbol stands for the complex conjugation.

It follows from the second relation that 4 can vanish only simultaneously which is
impossible in view of the fact that the matrix is invertible. Consequently, the relation
cd # 0 holds. Hence we get

=4 _C Rl =o.
c d

This contradiction proves the fact that the matrio; +io2) cannot be reduced to a Hermitian
form.

As the matrixoy + ioy is transformed to become — io, with the use of an appropriate
transformation (22), the lemma is proved. a

Lemma 2. Leta = (a1, az, as), b = (b1, by, b3), ¢ = (c1, 2, c3) be complex vectors and
o be the vector whose components are the Pauli matriegeso,, 03). Then the following
assertions hold true.

(i) A non-zero matrixic is reduced to a Hermitian form with the help of a transformation
(22) iffa* > 0 (this inequality means, in particular, thaf € R).

(i) Non-zero matricegia, bo with b # Aa, A € R, are reduced simultaneously to Hermitian
forms with the help of a transformation (22) iff

a’>>0 b2 >0 @@xb)?2>0.
(iii) Matricesda, b, co witha # 0,b # Ad, ¢ # ub, {, n} C Rare reduced simultaneously
to Hermitian forms with the help of a transformation (22) iff
@’ >0 b2 >0 @G@xby?2>0
{ac bé @ x b)é} C R.
Here we designate the scalar product of vectars asab and the vector product of these as
a x b.

Proof. Let us first prove the necessity of assertion 1 of the lemma. Suppose that the non-zero
matrix ac can be reduced to a Hermitian form. We will prove that it therefore follows the
inequalitya? > 0.
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Consider the matrices

Va2 +b%2 —b,

A[j(avb) — 1+6ijk—|0k a 5&0 (23)
1 a=20

where(, j, k) = cycle(l, 2, 3). Itis not difficult to verify that these matrices are invertible,
provided

va?2+a?+#0. (24)
Given the condition (24), the following relations hold:
Ok =k
b()'i + ao; I .
- —_ =i
o] — Aijl(a, byoiAij(a,b) =\ /a2 +p2 (25)
—ao; + bO’j [ — i
Va2 +b? -

As a is a non-zero vector, there exists at least one pair of the indicesuch that
a? +a% # 0. Applying the transformation (25) with = a;, b = a; we get

ac — a'c = /a? +afaj + a0y (26)

(no summation over the indicésj, k is carried out). As the direct check shows, the quantity
a? is invariant with respect to transformation (25), ué.= a’.

If G2 = 0, thena’ +a’; = 0, oraj = *iaj. Hence by force of lemma 1 it follows that
the matrix (26) cannot be reduced to a Hermitian form. Consequértl,0 and the relation
a'’% +a'; # 0 holds true. Applying transformation (25) with= , /a? + a?, b = a;, we get

i’ — Va2oy. (27)

Due to lemma 1, if the numbev/a? is complex, then the above matrix cannot be
transformed to a Hermitian matrix. Consequently, the relaifos 0 holds true.

The sufficiency of assertion 1 of the lemma follows from the fact that, given the condition
a’? > 0, the matrix (27) is Hermitian.

Now we will prove the necessity of assertion 2 of the lemma. First of all we note that
due to assertion 12 > 0, > > 0. Next, without loss of generality we can again suppose
thata? + af # 0. Taking the superposition of two transformations of the form (25) with

a=a;,b=ajanda = ,/ai2+a12-,b = a; Yyields
/72
. as — dg
2, 2
Ajj(ai, ap) A ji (w/a,' +aj, ak) =l+iej—F—=oi
(12+g2.
J
[2, 2 [ 2, 2 -
a; tajy—aj a; taj—a; /az—ak
gj
ai ai a?+q?
V& T

(here the finite limit exists when; — 0). Using this formula and taking into account (25)
yield

i

+i€,'jk

O — |6ijk

(28)

biaj — bjai + akab — bkﬁz 5b

lof gj+ Ok-
= /72
aiz +a12 a2 al.z +a12. a

ac — va2oy b — b'o =

(29)
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Let us show that the necessary conditipn for the matri¢édo,, b to bg reducible
to Hermitian forms simultaneously reads @s € R. Indeed, as the matricéss, o}, are
simultaneously reduced to Hermitian forms, the maiféi+ Aoy can be reduced to a Hermitian
form with any real.. Hence, in view of assertion 1 we conclude that

2+p2+ (b +21)%2>0 (30)
i J

wherea is an arbitrary real number. The above equality may be valid only when j—% eR.
Choosingr = —bj, in (30) yields thab'? + 5’3 > 0. Sinceb'? + b5 = (@ x b)?, we get

the desired inequalityiz x b)2 > 0. The necessity is proved.
In order to prove the sufficiency of the assertion 2, we consider transformation (25) with

azw b:akab—_bkaz (31)

ai2+a]2. a2 /aiz+a]2

This transformation leaves the matki%2o; invariant, while the matrix'c (29) transforms

as follows:
V@ x b)? 25
ab (32)

Vo - b'c = o;+ Ok
= Oj =
a

a

whence it follows the sufficiency of the assertion 2.

The proof of assertion 3 of the lemma is similar to one of assertion 2. The first three
conditions are obtained with account of assertion 2. A sequence of transformations (25) with
a, b of the form (28), (31) transforms the mati to become

e €ijkd(C x b) (a x b)(a x ¢) ac

co — o = o; + oj + o%.
5 7 S 2 = a2
(€ x b)2 /(€ x b)2+/a? a

Using the standard identities for the mixed vector products we establish that the coefficients
by the matrices;, o;, o are real if and only if the relations

{aé, bé, (@ x b)é) C R
hold true. This completes the proof of lemma 2. |

(33)

4. QES matrix models

Lemma 2 plays the crucial role when reducing operators (18) to Hermitian forms. This is done
as follows. Firstly, we reduce QES operator (18) to the 8dimger form

02+ f(y)ac + g(»ba +h(y)ca +r(y).

Note that when performing a change of variables (13) we firstly transform the function and
after that make the change of the dependent variable.

In the above fgrmulagf, g, h, r are some linearly independent real-valued functions and
d = (ai, as, az), b = (b1, by, b3), ¢ = (c1, c2, c3) are complex constant vectors whose
components depend on the parameﬁerﬁ, 7. Next, using lemma 2 we obtain the conditions
forthe parametei, §, 7 that provide a simultaneous reducibility of the matriéésba , é5 to
Hermitian forms. Then, making use of formulae (23), (28), (31) we find the form of the matrix
A. Formulae (27), (32), (33) yield explicit forms of the transformed matiagesao, co and,
consequently, the Hermitian form of the matrix potentdly).
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Applying this classification scheme we have described all possible values of parameters
o, B, i enabling reducibility of operatoH[x] (18) to a Hermitian Sclidinger operator.
As a result, we have arrived at the six inequivalent classes ob8ittger operators (3) with
a Hermitian matrixV (x). This, in its turn, yields a complete description of QES matrix
models (18) that can be reduced to Hermitian 8dirger matrix operators. We give below
the final results, namely, the restrictions on the choice of parameters and the explicit forms
of the QES Hermitian Scbdinger operators and then consider in some detail derivation of
the corresponding formulae for one of the six inequivalent cases. In the formulae below we
denote the disjunction of two statement@nd B as [A] Vv [B].

Casel. 1=y, =y3=0and
[Bo, B1, B2 € R] V[Bo =0, f1 =200, fo =1 +in, n € R]

APl a2 1 2.4 3
A = 52 | 1B (2 + it — Dl

+[2a2B1 — 20182 — B — 2BoP2 — Aarfa(m — D)]x?
+4a2fo — 2Bopr — dmaoBalx + 201 P0 — 200p1 — B
+4B5(px” + a1x + ag)o1 + (4B2x + 26)(azx® + ax + )0}
L 3(209x + o1)? }
2 16(oox? + apx + o)

x=f"1)
A=1

Hereafter, we denote the inverse of the function

(34)

d
== [
Vooxc+oa1x +ap

asf(y).

Case 2. B,,8 =0and
20081 — B2 R 2mPo—fPofr € R 201fo — 210 — fE— 2 €R
[(2az — B1)?7? > O]V [2ap — B = 0] [(e1 — Bo)?72 > 0]V [a1 — Bo = O]

N 1
Hlyl = o7 + {4(a2x2 T onx + o) {,31(2012 — Bu)x* + 2B0(202 — f1)x

+2001 B0 — 2P1ato — B§ — 72+ [2(202 — B)x + 2(cr1 — Bo)] 17,»263}

Lz 3(209x + o1)? }
2 16(oox? + apx + o) x=f-1(y)

A = A12(y1, V2) A2z <\/ Vi + 74, )73> v+ 75 #0.

(If 72 + 77 = 0, then one can choose another matti{27) with 72 + 72 # 0.)

Case 3. a2 #0, 8, #0and

o (07
|:{,32, y1} CReys =0,y = /¥ — 20211, 021 < 0, f1 = 205 + ,320[—;, Bo=oay+ ,320[—21|
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o2 3(2aox + 0r1)? 1
2 16(aox2+oaix +ag)  A(oox? +oarx + o)

X{ — Box’ — [Zﬁzzz—; + 40tzﬁzm]x?’

[ B2
o3
[ 201 Ba(c1c + o B2)
_ 2
—4,32% — dogory — 20071 + ABox (aox? + aax + o)
2

x| sin (9 (GD2V/ —2a2y1)al + COS(@(y)‘/ —2a2y1)03:|

sin (6 (y)v/—2a2y1)
A/ —2a2y1

< (3v=Zaaror — 26e,/y7 — 20z
2B,/ vE — 200271
+ COS(Q(y) \/m) E

H[y] :8§+{

(af + 2000002) + 201 B (1 + 2m>}x2

2
2 2%
+ 4060/32’71}6 to] — /32;

+2(apx? + ax + ag) [

o1+ 803
\/—2062)/1
x=f"1(y)
2 —2
A=1+<\/1—ﬂ—\/ az)ag
Y1 7
where the functio® = 6(y) is defined as follows:
dx
o= [t @
Xt ox oo ) [i— 1y
Case4. a» #0,8, =0.
Subcase 4.1. § #£ 0, y1, ¥» do not vanish simultaneously and
v—vi<0  y=ip {8 CR  i—P)eR  pr1=2wm

o 3(2u2x + 1) + 1
2 16(apx?+aix +ag) 4

ﬁ[y]=a§+{

X{ — BE + 2010 — 200P1 — 7 + 2(a2x” + arx + atg)

. —\
S (9(”\/ Vi ) —i8y3\/vi = vio2 + (v — Do
+
~ 52
/2 7

25 25
x cog6(y) —fiz)} + [ ;§y3x2+ (f;ysx

x | 8y/vd — yio1

Vi
201 — 2Bo) 72 + 28 .
! ,303);, Olo)/s} (I /7/22 2oyt 7/303)} }
Vi x=f"1(y)
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A = Ax(iy1, vo).

Subcase 4.2.§ £0,y1 =y, =0,y3 #0and
{8, Pr(202 — 1), Bo(Raz — P1), —BE + 201 o — 200B1, v3(22 — B1), va(er — fo)} C R

A o 3(2aox + 0r1)? 1 2
HIvl =82+ =5 — 2000 —
V] ’ { 2 16(aox2+oa1x +ag)  A(oox? +oarx + o) (Pr(2az = Pu)x

+2B0(202 — P1)x — B + 201 B0 — 2p100 — V4
+[2802x2 + 2 ((2a2 — B1)ys + o) + 2(a1 — o) ys + 260]03}}xm f-1(y)

A=1

Case 5. a2 =0,8, #0and

~2
- V4
a1¢0,yf—yf<0,7/,~2<0,y3=27’[1

{Bo. B1. B2. v2.8(v4 — v{) + 2B2y1ys} C R
{i(2eoP2ys — P12 + 2B201y1 + 8a1ys), (a1 — Bo) 72 + 2B200y1 + Sagys)} C R
n 3a2 1
Al =92+ ] _ 1 + _ B2 _9 3
V] By { 16(o1x +g)  A(orx +ao){ Pax PrB2x
+[(2 — dm)a1Bo — B — 2BoPalx? — [2Bof1 + dmaoBa)x
+201 0 — 200p1 — BE — 77 + Ax(a1x + ag)

sin (e(y)v _77i2> By (V2 — vE)7?
X ,32,/)/22 — ylzal F + 1372 2 Vi
_yi i

x cos(@(y),/ —;7i2>} +2(a1x + )

8 sin{ 6(),/— 32>
(8 (2 — v?) + 2B20173 2Boyov? ) ( YN
X o1 — 03

VY2 —vi vE = vHv? N/

L[ 22 S0E-vD) - 2,32)/11/303) COS<9 ) \/_72”
\/ﬂ vf—vDHv?
+ [x 4aoBays — 2Pr7’ "'24“1,32)/1 +25a1y3
Vi
4+ (2= 26077 +~420€0,32V1 + 230101/3] (—i _j2 02)} }
Vi

A = Aoa(iyr, y2) A2z (_iV3\/ e T 2 sz) .

Case 6. ap =0,8,=0.

03

x=f71()
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Subcase 6.1. § £ 0, 71, 7» do not vanish simultaneously and
72 <0.48%(f —73) < 0.0, A} CR
{i(—Bup? +daays), i((e1 — Bo)7” + Saoya)} C R

A 2 305% 1
H[y] = a7+ — +
) 16(cyx +ag)  4(orx + o)

x{ — B2x? — 2PoPux + 2010 — 200P1 — PG — 77 + 2(aax + )
sin{ 6(y),/— 32)
( )L sk -vd
03
vV _771'2 (V12 - V22)77i2
—2B172 + 28 201 — 2B0) 2 + 28
» COS(G(y) /_?i2>i| N |:x ﬂlylj;z oys . (201 /30))7)2/, Otoys:|
()
x=f"1(y)
A = Aoa(iyr, y2) A2z <—iV3\/ Vi — Vi yE— V22) .

Subcase 6.2.

y1=1=0,13#0 (B2, Bop1) C R
{—B1ys +8a1, (a1 — Bo)ys + oo, — B3 + 20180 — 2a0p1) C R

n 32 1
Aly] = 02+ { i

x | 8/vZ — viou

— +
16(a1x +ag)  4(orx +ap)
x{—B2x? — 2foprx + 2010 — 2000p1 — B3 — V3

+2(01x + ) [2xB1 (01 — y3) + 21 — Po) vz + 2,31050103}}

x=f"1(y)
A=1

In the above formulag? stands fory? + 75 + 2 and the matricesi,, A3 are given in [21].

The whole procedure of derivation of the above formulae is very cumbersome. That is
why we restrict ourselves to indicating the principal steps of the derivation of the corresponding
formulae for the case when # 0, 82 # 0 omitting the secondary details. Itis not difficult to
prove thaty?i2 # 0. Indeed, suppose that the relat';ifh: 0 holds and consider the expression
Q = U~(x)o3U (x) from (21). Making use of the Campbell-Hausdorff formula we get

2

Q =03 +0(iy102 + y201) — 3)/3)71'01'

where# is the function (35). Considering the coefficien®atyields thatys = 0 (otherwise
using lemma 2 we get the inequalitf7? # 0 that contradicts the assumptih = 0). Since

the matrix coefficient a has to be Hermitian, we g¢f = y? — v < 0. This contradiction
proves thaty? # 0. In view of this inequality we can represent the matrix potential (21) as
follows:
Vy) = {

oo 3(200x + 0r1)? 1 _1
2 16(aox2+a1x +ag)  Aaxx? +aix +ap)
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x{ B2x* — [2B1fa + darafa(m — D]x®

+[202B1 — 20182 — BF — 2Bof2 — 41 Bo(m — D)]x?
+4a2Bo — 2BoPr — dmaoalx + 201 P0 — 200p1 — B — T

+4x (02x? + a1x + o) [ﬂzys(?,-z)_lﬁ- o;
+B2(y201 + iy102) (7%~ 2 sinh (9 J7i2>

+[B2(—y1y301 — iy2y302 + (V£ — ¥ o) (7D~ 1005h<9 Vi ) ]
+2(02x? + a1x + ) [(8y201 + (81 — 2B2y3)02
2827200 (722 sinh (Nﬁ)

+[<2ﬂz<y§ — ¥2) = 8y1y3)o1 — i(2B2y1y2

+8y2y3)02 + (8(vZ — v2) — 2B2v1v3)0s] (72) 1 005h<9 Z ) }

+H(—2B272 + daaBoys + 28a2y3)x? + ((daz — 2B1) 77 + das foyr + 28a1y3)x
(20l1 — 2B0) 7% + 4060,32)/1 + 2000)3 2
52 175 Y0

(36)

x=f"1(y)
wheref = 6(y) is given by (35).
Let usfirst suppose that, y» do not vanish simultaneously. We will prove that it therefore

follows that;?i2 € R. Consider the (non-zero) matrix coefficient att&osho ;7i2) in the
expression (36) and suppose t@é;i? = a + ib, with some non-zero real numbersandb.

Now it is easy to prove that cogh/7?) = f(x) +ig(x), wheref, g are linearly independent
real-valued functions. Considering the matrix coefficientg ©f), g(x) we see that in order to
reduce the matrix (36) to a Hermitian form we should reduce to Hermitian forms the matrices
A, iA which is impossible. This contradiction proves tidte R.

i 52
Consider next the non-zero matrix coeﬁicientsn&ﬁ%, 4x & coshe,/ 371'2) in (36).
Yi
These coefficients can be represented in the foFmba , where
a = Ba(y2,iy1, 0) b = Bo(—y1ya, —ivays, vE — v2)
and, what is more,
i x b= B3¢ — Ay, —v2.iya).
Applying lemma 2 yields
Bi eR y3=iu neR ylz—y22<0.
Next we turn to the matrix coefficient ofgf%\/% which is of the formco with

¢ = (8y2,i1(8y1 — 2B2y3), —2B2y»). Making use of assertion 3 of lemma 2 we obtain the
conditions

{vi, 2} CR [y1=0]Vv[y3=0].
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Considering in a similar way the matrix coefficient gf@sh,/7?) yields the following
restrictions on the coefficients 8, 7:

o (075}
|:{,32, yi} CR,ys=0,y2 = /¥ — 2021, aoy1 < 0, B1 = 20, + ,320[—;, Bo=oa1+ ﬂza—z] .

As a result we get the formulae of case 2.

One can prove in an analogous way that, provigge: y, = 0, y3 # 0, the matrix (36)
cannot be reduced to a Hermitian form.

A further restriction narrowing the choice of QES matrix Hamiltonians is a requirement
that the basis elements of the corresponding invariant space should be square integrable on the
interval (—oo, 00). For example, if we put in cased = 1, 8o = % B2 = —1, the remaining
coefficients being equal to zero, then we arrive at model 1 from the list of QES Hamiltonians
given in the introduction. The remaining models given there are obtained in an analogous way.

5. Some conclusions

A principal aim of this paper is to give a systematic algebraic treatment of Hermitian QES
Hamiltonians within the framework of the approach to constructing QES matrix models
suggested in our papers [1, 2]. The whole procedure is based on a specific representation of the
algebrao(2, 2) given by formulae (5), (7), (8). Making use of the fact that the representation
space of the algebra (8) has a finite-dimensional invariant subspace (6) we have constructed in
a systematic way six multi-parameter families of Hermitian QES Hamiltonians on line. Due
to computational reasons we do not present here a systematic description of Hermitian QES
Hamiltonians with potentials depending on elliptic functions.

The problem of constructing all Hermitian QES Hamiltonians of the form (18) having
square integrable eigenfunctions is also beyond the scope of this paper. We restricted our
analysis of this problem to giving several examples of such Hamiltonians postponing its further
investigation for our future publications.

A very interesting problem is a comparison of the results of this paper based on the
structure of representation space of the representation (5), (7), (8) of the Lie alg2®ato
those of [17], where some superalgebras of matrix-differential operators come into play. The
link to the results of [17] is provided by the fact that the Lie algelq@ 2) has a structure of
a superalgebra. This is a consequence of the fact that operators (8) fulfill identities (9).

One more challenging problem is a utilization of the obtained results for integrating
multi-dimensional Pauli equation with the help of the method of separation of variables. As
an intermediate problem to be solved within the framework of the method in question is a
reduction of the Pauli equation to four second-order systems of ordinary differential equations
with the help of a separation ansatz. The next step is studying whether the corresponding
matrix-differential operators belong to one of the six classes of QES Hamiltonians constructed
in section 4.

Investigation of the above enumerated problems is nhow in progress and we hope to report
the results obtained in one of our future publications.
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